Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Orthop...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Orthopaedics
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Orthopaedics
Article
License: CC BY
Data sources: UnpayWall
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bony callus stiffness indirectly evaluated by the axial load-share ratio in vivo as a guide to removing a monolateral external fixator safely

Authors: Tao Zhang; Xingpeng Zhang; Xuefei Fu; Aihemaitijiang Yusufu; Yanshi Liu; Feiyu Cai; Kai Liu; +1 Authors

Bony callus stiffness indirectly evaluated by the axial load-share ratio in vivo as a guide to removing a monolateral external fixator safely

Abstract

Abstract Purpose As the monolateral external fixator is increasingly used in trauma-control and definitive management for high-energy long bone fractures, timing the fixator removal remains a challenge for surgeons. The purpose of this study was to determine the feasibility and effectiveness of the bony callus stiffness indirectly evaluated by the axial load-share ratio in vivo as a guide to removing a monolateral external fixator safely. Methods A total of 131 patients with tibial shaft fractures treated by the monolateral external fixator in our institution were collected from January 2013 to July 2019. In group I, the fixators were removed based on the clinical and radiological assessment only by the treating surgeon. As for group II, the axial load-share (LS) ratio test was accomplished by another medical team without the knowledge of the clinical results. The external fixator was removed when the mechanical test outcome (LS ratio < 10%) was consistent with the conclusion drawn from the clinical and radiological assessment (bone union achieved) by the treating surgeon. Results There was no statistical significance in demographic data between the two groups (P > 0.05). In group I, four patients suffered refracture (the refracture rate was 7.7%) after fixator removal and were successfully treated by an intramedullary nail. In group II, 71 patients underwent fixator removal after the first mechanical test, and another eight patients terminated the external fixation after the second test. None of the 79 patients in group II suffered refracture (the refracture rate was 0%). There was statistical significance in the refracture rate between the two groups (P < 0.05). Conclusion The bony callus stiffness indirectly evaluated by the axial load-share ratio in vivo using the additional circular frame components is an effectively quantitative indicator to complement the clinical assessment of fracture healing in a monolateral external fixation treatment. Removal of the monolateral external fixator is safe when the axial load-share ratio dropped below 10%.

Related Organizations
Keywords

Fracture Healing, Original Paper, External Fixators, Tibial Fractures, Treatment Outcome, Fracture Fixation, Humans, Bony Callus

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green
hybrid