
Duke and Jenkins (Pure Appl Math Q 4(4):1327–1340, 2008) constructed a canonical basis for the space of weakly holomorphic modular forms for $${{\rm SL}_2(\mathbb{Z})}$$ and investigated the zeros of the basis elements. In this paper we give an analogy in the Drinfeld setting of the result given by Duke and Jenkins (Pure Appl Math Q 4(4):1327–1340, 2008).
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
