
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 10486/708300 , 20.500.11824/1619 , 2117/381227 , 10810/65283
We study spectral properties of Dirac operators on bounded domains $Ω\subset \mathbb{R}^3$ with boundary conditions of electrostatic and Lorentz scalar type and which depend on a parameter $τ\in\mathbb{R}$; the case $τ= 0$ corresponds to the MIT bag model. We show that the eigenvalues are parametrized as increasing functions of $τ$, and we exploit this monotonicity to study the limits as $τ\to \pm \infty$. We prove that if $Ω$ is not a ball then the first positive eigenvalue is greater than the one of a ball with the same volume for all $τ$ large enough. Moreover, we show that the first positive eigenvalue converges to the mass of the particle as $τ\downarrow -\infty$, and we also analyze its first order asymptotics.
49 pages, 5 figures. v2: version after referee report (Conjecture 1.8 and Remark 1.9 added) v3: Final version
35Q40 (Primary), 35P05, 81Q10 (Secondary), Àrees temàtiques de la UPC::Matemàtiques i estadística, Matemáticas, Física matemàtica, Shape Optimization, FOS: Physical sciences, Mathematical Physics (math-ph), MIT Bag Model, Didac Operator, Spectral Theory, Mathematics - Analysis of PDEs, Mathematical physics, Hardy Space, FOS: Mathematics, Mathematical Physics, Analysis of PDEs (math.AP)
35Q40 (Primary), 35P05, 81Q10 (Secondary), Àrees temàtiques de la UPC::Matemàtiques i estadística, Matemáticas, Física matemàtica, Shape Optimization, FOS: Physical sciences, Mathematical Physics (math-ph), MIT Bag Model, Didac Operator, Spectral Theory, Mathematics - Analysis of PDEs, Mathematical physics, Hardy Space, FOS: Mathematics, Mathematical Physics, Analysis of PDEs (math.AP)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
views | 40 | |
downloads | 22 |