
AbstractWe study harmonic functions associated to systems of stochastic differential equations of the form $$dX_t^i=A_{i1}(X_{t-})dZ_t^1+\cdots +A_{id}(X_{t-})dZ_t^d$$ d X t i = A i 1 ( X t - ) d Z t 1 + ⋯ + A id ( X t - ) d Z t d , $$i\in \{1,\dots ,d\}$$ i ∈ { 1 , ⋯ , d } , where $$Z_t^j$$ Z t j are independent one-dimensional symmetric stable processes of order $$\alpha _j\in (0,2)$$ α j ∈ ( 0 , 2 ) , $$j\in \{1,\dots ,d\}$$ j ∈ { 1 , ⋯ , d } . In this article we prove Hölder regularity of bounded harmonic functions with respect to solutions to such systems.
Harmonic functions, Probability (math.PR), 510, Support theorem, FOS: Mathematics, 60J75, 60H10, 31B05, 60G52, Anisotropy, Nonlocal Operators, Jump processes, Mathematics - Probability, Holder continuity
Harmonic functions, Probability (math.PR), 510, Support theorem, FOS: Mathematics, 60J75, 60H10, 31B05, 60G52, Anisotropy, Nonlocal Operators, Jump processes, Mathematics - Probability, Holder continuity
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
