Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mathematische Zeitsc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mathematische Zeitschrift
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2011
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2008
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mean curvature flow of spacelike graphs

Authors: Li, Guanghan; Salavessa, Isabel M. C.;

Mean curvature flow of spacelike graphs

Abstract

We prove the mean curvature flow of a spacelike graph in $(��_1\times ��_2, g_1-g_2)$ of a map $f:��_1\to ��_2$ from a closed Riemannian manifold $(��_1,g_1)$ with $Ricci_1> 0$ to a complete Riemannian manifold $(��_2,g_2)$ with bounded curvature tensor and derivatives, and with sectional curvatures satisfying $K_2\leq K_1$, remains a spacelike graph, exists for all time, and converges to a slice at infinity. We also show, with no need of the assumption $K_2\leq K_1$, that if $K_1>0$, or if $Ricci_1>0$ and $K_2\leq -c$, $c>0$ constant, any map $f:��_1\to ��_2$ is trivially homotopic provided $f^*g_20$, and $��=+\infty$ in case $K_2\leq 0$. This largely extends some known results for $K_i$ constant and $��_2$ compact, obtained using the Riemannian structure of $��_1\times ��_2$, and also shows how regularity theory on the mean curvature flow is simpler and more natural in pseudo-Riemannian setting then in the Riemannian one.

version 5: Math.Z (online first 30 July 2010). version 4: 30 pages: we replace the condition $K_1\geq 0$ by the the weaker one $Ricci_1\geq 0$. The proofs are essentially the same. We change the title to a shorter one. We add an application

Related Organizations
Keywords

Mathematics - Differential Geometry, Global submanifolds, space-like submanifold, homotopic maps, Equations in function spaces; evolution equations, mean curvature flow, Mathematics - Analysis of PDEs, maximum principle, Differential Geometry (math.DG), FOS: Mathematics, Nonlinear parabolic equations, Geometric evolution equations (mean curvature flow, Ricci flow, etc.), Analysis of PDEs (math.AP), 53C21, 53C40, 58D25, 35K55

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Average
Green
bronze