
Let K be a field of characteristic zero, n>4 an integer, f(x) an irreducible polynomial over K of degree n, whose Galois group is doubly transitive simple non-abelian group. Let p be an odd prime, Z[��_p] the ring of integers in the p-th cyclotomic field, C_{f,p}:y^p=f(x) the corresponding superelliptic curve and J(C_{f,p}) its jacobian. Assuming that either n=p+1 or p does not divide n(n-1), we prove that the ring of all endomorphisms of J(C_{f,p}) coincides with Z[��_p].
Several typos have been corrected
Mathematics - Algebraic Geometry, Mathematics - Number Theory, 14H40, 14K05, 11G30, FOS: Mathematics, Number Theory (math.NT), Algebraic Geometry (math.AG)
Mathematics - Algebraic Geometry, Mathematics - Number Theory, 14H40, 14K05, 11G30, FOS: Mathematics, Number Theory (math.NT), Algebraic Geometry (math.AG)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
