
handle: 10281/6168
In this article we consider contact mappings on Carnot groups. Namely, we are interested in those mappings whose differential preserves the horizontal space, defined by the first stratum of the natural stratification of the Lie algebra of a Carnot group. We give a sufficient condition for a Carnot group G to admit an infinite dimensional space of contact mappings, that is, for G to be nonrigid. A generalization of Kirillov’s Lemma is also given. Moreover, we construct a new example of nonrigid Carnot group.
510 Mathematics, Carnot groups; contact mappings; sub-Riemannian geometry; rigidity
510 Mathematics, Carnot groups; contact mappings; sub-Riemannian geometry; rigidity
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
