
pmid: 9382700
Rather recently it has become clear that prokaryotes (Archaea and Bacteria) are able to glycosylate proteins. A literature survey revealed the different types of glycoproteins. They include mainly surface layer (S-layer) proteins, flagellins, and polysaccharide-degrading enzymes. Only in a few cases is structural information available. Many different structures have been observed that display much more variation than that observed in eukaryotes. A few studies have given evidence for the function of the prokaryotic glycoprotein glycans. Also from the biosynthetic point of view, information is rather scarce. Due to their different cell structure, prokaryotes have to use mechanisms different from those found in eukaryotes to glycosylate proteins. However, from the fragmented data available for the prokaryotic glycoproteins, similarities with the eukaryotic system can be noticed.
Glycosylation, Membrane Glycoproteins, Bacteria, Bacterial Proteins, Prokaryotic Cells, Archaeal Proteins, Archaea, Protein Processing, Post-Translational, Glycoproteins
Glycosylation, Membrane Glycoproteins, Bacteria, Bacterial Proteins, Prokaryotic Cells, Archaeal Proteins, Archaea, Protein Processing, Post-Translational, Glycoproteins
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 118 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
