
This paper considers the application of semiparametric methods to estimate propensity scores or probabilities of program participation, which are central to certain program evaluation methods. To evaluate the practical benefits, we first conduct a Monte Carlo study. Second, we use data from the NSW experiment, CPS, and PSID. We compare treatment effect and evaluation bias estimates using propensity scores estimated from parametric logit, semiparametric single index, and semiparametric binary quantile regression models. Our results suggest that it is important to account for very general forms of heterogeneity in (semiparametric) estimation of the propensity score, particularly when the treatment effects vary in an unsystematic manner with the true propensity score.
Propensity Score matching, program evaluation, Binary quantile regression and heterogeneity, jel: jel:J00, jel: jel:C35, jel: jel:C14
Propensity Score matching, program evaluation, Binary quantile regression and heterogeneity, jel: jel:J00, jel: jel:C35, jel: jel:C14
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
