Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cryptolog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cryptology
Article . 1998 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Black-Box Model for Cryptographic Primitives

The black-box model for cryptographic primitives
Authors: Schnorr, Claus Peter; Vaudenay, Serge;

The Black-Box Model for Cryptographic Primitives

Abstract

To investigate security properties of a cryptographic primitive it is useful to grasp the idea a class of attacks is based on. Having a model that describes essential features of the primitive without unnecessary details one can concentrate on what makes the primitive resistant to what class of attacks. A cryptographic primitive can be modelled by a computation graph in which the vertices are computation boxes. Given such a model one can say that some attacks are based on utilizing certain properties of the boxes while others may make use of the structure of the computation graph. The article is about investigating security properties provided by a computation graph, i.e. regardless of the inner structure of the boxes. This allows one to study a family of generic attacks which generalize exhaustive search and the birthday paradox. The authors first introduce the black-box model, i.e. the model in which the cryptographic primitives are given by a computation graph, where the computation boxes associated with the vertices of the graph act as random oracles (black-boxes). After defining complexity measure for the model lower bound for a family of generic attacks is established. Then the approach is applied to compression functions whose computation graph is represented by the FFT interconnection network (the computation graph of the Fast Fourier Transform). Upper and lower bounds for the complexity of inverting the function computed by this network are proved. Finally, the authors briefly outline possible extensions to their approach.

Keywords

lower bounds, generic attacks, Cryptography, cryptographic primitives, computation graph

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!