<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We completely describe the signatures of the Ricci curvature of left-invariant Riemannian metrics on arbitrary real nilpotent Lie groups. The main idea in the proof is to exploit a link between the kernel of the Ricci endomorphism and closed orbits in a certain representation of the general linear group, which we prove using the `real GIT' framework for the Ricci curvature of nilmanifolds.
11 pages
Mathematics - Differential Geometry, Differential Geometry (math.DG), FOS: Mathematics
Mathematics - Differential Geometry, Differential Geometry (math.DG), FOS: Mathematics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |