Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Integral Equations a...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Integral Equations and Operator Theory
Article . 2014 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2015
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Eigenvalues of Adjoints of Certain Composition Operators and Weighted Composition Operators

Eigenvalues of adjoints of certain composition operators and weighted composition operators
Authors: Neophytou, Maria;

Eigenvalues of Adjoints of Certain Composition Operators and Weighted Composition Operators

Abstract

The paper is concerned with the spectral theory of composition operators on the Hardy space \(H^2\) of the unit disk. The author proves that, under certain conditions on the symbol \(\varphi \) (involving in particular fixed points), the point-spectrum of the adjoint \(C_\varphi^*\) of \(C_\varphi\) contains a disk centered at the origin. It is also shown that under these conditions the associated eigenspaces are infinite dimensional. Also studied are weighted composition operators. The proofs are based on \textit{P. Poggi-Corradini}'s work [Rev. Mat. Iberoam. 19, No. 3, 943--970 (2003; Zbl 1057.30023)] on the existence of backward iteration sequences for \(\varphi\). Unveiled are \(C_\varphi^*\)-invariant subspaces \(M\) such that \(C^*_\varphi|_M\) is similar to a backward weighted shift.

Related Organizations
Keywords

invariant subspace, adjoints, Linear composition operators, Eigenvalue problems for linear operators, composition operator, eigenvalues, weighted shift

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!