
handle: 11588/204583
An automorphism α of a group G is called a noetherian automorphism if for each ascending chain $$ X_1 < X_2 < \ldots < X_n < X_{n + 1} < \ldots $$ of subgroups of G there is a positive integer m such that \(X_n^{\alpha} = X_n \) for all n ≥ m. The structure of the group of all noetherian automorphisms of a group is investigated in this paper.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
