Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Queensland Universit...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Knowledge and Information Systems
Article . 2001 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2001
Data sources: zbMATH Open
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

C-Net: A Method for Generating Non-deterministic and Dynamic Multivariate Decision Trees

C-Net: a method for generating non-deterministic and dynamic multivariate decision trees
Authors: Hussein A. Abbass; Michael Towsey; Gerard D. Finn;

C-Net: A Method for Generating Non-deterministic and Dynamic Multivariate Decision Trees

Abstract

Despite the fact that artificial neural networks (ANNs) are universal function approximators, their black box nature (that is, their lack of direct interpretability or expressive power) limits their utility. In contrast, univariate decision trees (UDTs) have expressive power, although usually they are not as accurate as ANNs. We propose an improvement, C-Net, for both the expressiveness of ANNs and the accuracy of UDTs by consolidating both technologies for generating multivariate decision trees (MDTs). In addition, we introduce a new concept, recurrent decision trees, where C-Net uses recurrent neural networks to generate an MDT with a recurrent feature. That is, a memory is associated with each node in the tree with a recursive condition which replaces the conventional linear one. Furthermore, we show empirically that, in our test cases, our proposed method achieves a balance of comprehensibility and accuracy intermediate between ANNs and UDTs. MDTs are found to be intermediate since they are more expressive than ANNs and more accurate than UDTs. Moreover, in all cases MDTs are more compact (i.e., smaller tree size) than UDTs.

Country
Australia
Related Organizations
Keywords

Computing methodologies and applications, Database theory, 006, Keywords: C5, Information storage and retrieval of data, Univariate decision trees, C5, Multivariate decision trees, Neural networks

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Top 10%
Average
Green