
AbstractThe abundance of 21-cm absorption lines seen in surveys at high latitudes can be translated into a line of sight abundance of clouds vs. column density using an empirical relationship between temperature and optical depth. As VLA surveys of 21-cm absorption at low latitudes are now becoming available, it is possible to study the variation of this function with galactic radius. It is interesting to compare the abundance of these diffuse atomic clouds (with temperatures of 50 to 100 K and masses of 1 to 10 M⊙) to the abundance of molecular clouds. To do the latter we must make assumptions about cloud cross-sections in order to convert the line of sight abundance of diffuse clouds into a number per unit volume, and to convert from cloud column density to mass. The spectrum of diffuse clouds matches fairly well the spectrum of molecular clouds, although observationally there is a gap of several orders of magnitude in cloud mass. Optical absorption studies also agree well with the 21-cm results for clouds of column density a few times 1020 M⊙.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
