
arXiv: hep-th/9811110
We analyze $S^1$ equivariant cohomology from the supergeometrical point of view. For this purpose we equip the external algebra of given manifold with equivariant even super(pre)symplectic structure, and show, that its Poincare-Cartan invariant defines equivariant Euler classes of surfaces. This allows to derive localization formulae by use of superanalog of Stockes theorem.
7 pages, to be published in the memorial volume, dedicated to V.I.Ogievetsky
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
