Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Background and perspectives of possibilistic graphical models

Authors: Jörg Gebhardt; Rudolf Kruse;

Background and perspectives of possibilistic graphical models

Abstract

Graphical modelling is an important tool for the efficient representation and analysis of uncertain information in knowledge-based systems. While Bayesian networks and Markov networks from probabilistic graphical modelling are well-known for a couple of years, the field of possibilistic graphical modelling occurs as a new promising area of research. Possibilistic networks provide an alternative approach compared to probabilistic networks, whenever it is necessary to model uncertainty and imprecision as two different kinds of imperfect information. Imprecision in the sense of set-valued data has often to be considered in situations where data are obtained from human observations or non-precise measurement units. In this contribution we present a comparison of the background and perspectives of probabilistic and possibilistic graphical models, and give an overview on the current state of the art of possibilistic networks with respect to propagation and learning algorithms, applicable to data mining and data fusion problems.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!