
Much work has been done in the áreas of and-parallelism and data parallelism in Logic Programs. Such work has proceeded to a certain extent in an independent fashion. Both types of parallelism offer advantages and disadvantages. Traditional (and-) parallel models offer generality, being able to exploit parallelism in a large class of programs (including that exploited by data parallelism techniques). Data parallelism techniques on the other hand offer increased performance for a restricted class of programs. The thesis of this paper is that these two forms of parallelism are not fundamentally different and that relating them opens the possibility of obtaining the advantages of both within the same system. Some relevant issues are discussed and solutions proposed. The discussion is illustrated through visualizations of actual parallel executions implementing the ideas proposed.
Informática, Data-parallelism, Tareas de inicio rápidas, Scheduling, Programación., Parallel logic programming, Programación lógica en paralelo, And-parallelism, Fast task Startup
Informática, Data-parallelism, Tareas de inicio rápidas, Scheduling, Programación., Parallel logic programming, Programación lógica en paralelo, And-parallelism, Fast task Startup
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
