
doi: 10.1007/bfb0016562
The recent discovery of a type II supernova in the Large Magellanic Cloud provides a rare chance to compare models of stellar evolution and nucleosynthesis directly with observations. This workshop covers thermonuclear reaction rates in chaos (experimental and theoretical), stellar evolution, nucleosynthesis and isotopic anomalies in meteorites and, in a final section, the supernovae, in particular SN 1987A. It brings the most interesting news in the rapidly developing field of nuclear astrophysics to researchers and also to graduate students. Recent and future developments are discussed. Special emphasis is placed on experimental and theoretical approaches to obtaining nuclear reaction rates, models of stellar evolution and explosions, and theories of nucleosynthesis. Various aspects of stellar evolution, nucleosynthesis, and thermonuclear reactions of astrophysical interest are reviewed. Several contributions deal with supernova explosions of massive stars, and in particular with Supernova 1987A and its impact on current models of the evolution of massive stars, the gravitational collapse of stellar cores, and neutrino physics and astronomy.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
