Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della Ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/bfb001...
Part of book or chapter of book . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An algebra of graphs and graph rewriting

Authors: CORRADINI, ANDREA; MONTANARI, UGO GIOVANNI ERASMO;

An algebra of graphs and graph rewriting

Abstract

In this paper we propose an axiomatization of ‘partially abstract graphs’, i.e., of suitable classes of monomorphisms in a category of graphs, which may be interpreted as graphs having both a concrete part and an abstract part (defined up to isomorphism). Morphisms between pa-graphs are pushout squares. We show that the basic notions of the algebraic theory of graph grammars [Eh79] (instantiated to a suitable category of graphs) can be rephrased in a natural way using partially abstract graphs. The terms of the algebra we propose are built over a small set of operators, including parallel composition, substitution application, and restriction. By equipping the algebra of terms with a categorical structure (arrows are equivalence classes of monadic contexts), we show that there is a full and faithful embedding (with a right adjoint) of the category of partially abstract graphs into the category of (well-formed) terms. This embedding is exploited to show that rewriting (in the sense of term rewriting systems) over this algebra models faithfully the direct derivations of graphs, described by a double pushout construction along the guidelines of [Eh79]. In particular, we show that also graph productions having non-discrete gluing graphs can be represented as term rewrite rules without loss of information, unlike a similar approach proposed in [BC87].

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!