Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Results in Mathemati...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Results in Mathematics
Article . 2001 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2001
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Almost Complex Manifolds and Hyperbolicity

Almost complex manifolds and hyperbolicity
Authors: Kobayashi, Shoshichi;

Almost Complex Manifolds and Hyperbolicity

Abstract

One of the sufficient conditions for a complex manifold to be (complete) hyperbolic (that is, its intrinsic pseudo-distance is a (complete) distance) is that it has a (complete) Hermitian metric with holomorphic sectional curvature bounded above by a negative constant. Such a concept of hyperbolicity can be extended to almost complex manifolds. In this paper, the author shows that the above result on hyperbolicity also holds for the almost complex case. In fact, he proves that if an almost complex manifold \(M\) admits a (complete) Hermitian metric with holomorphic sectional curvature bounded above by \(-1\), then \(M\) is (complete) hyperbolic. Moreover, as an application, he shows that every point of an almost complex manifold has a complete hyperbolic neighborhood. In real dimension 4, this fact was proved by \textit{R. Debalme} and \textit{S. Ivashkovich} [Int. J. Math. 12, 211-221 (2001; Zbl 1110.32306)] by a completely different method.

Keywords

hyperbolicity, General geometric structures on manifolds (almost complex, almost product structures, etc.), Hermitian metrics, holomorphic sectional curvature, almost complex manifolds, Methods of global Riemannian geometry, including PDE methods; curvature restrictions, distance, Other complex differential geometry

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!