
doi: 10.1007/bf03322243
Das Interesse an \(K\)-Loops hängt mit der Theorie scharf zweifach transitiver Gruppen zusammen. Die diese koordinatisierenden Strukturen sind bezüglich ihrer Addition \(K\)-Loops mit einer scharf transitiven Automorphismengruppe. Es sei \(D\) die Algebra der dualen Zahlen über einem euklidischen Körper \(K\) und \(\varepsilon\) die Konjugation in \(D\). Die Verfasser zeigen, daß die Menge der bezüglich \(\varepsilon\) hermiteschen \((2 \times 2)\)-Matrizen \(A\) mit positiver Spur und positiver Determinante eine \(K\)-Loop bilden, wenn man als Summe \(A \oplus B = \sqrt{A} B \sqrt {A}\) nimmt. Sie bestimmen auch die Unterloops solcher \(K\)-Loops.
sharply transitive automorphism groups, Loops, quasigroups, Multiply transitive infinite groups, \(K\)-loops
sharply transitive automorphism groups, Loops, quasigroups, Multiply transitive infinite groups, \(K\)-loops
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
