Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of the A...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of the Astronautical Sciences
Article . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modified Chebyshev-Picard Iteration Methods for Orbit Propagation

Authors: Xiaoli Bai; John L. Junkins;

Modified Chebyshev-Picard Iteration Methods for Orbit Propagation

Abstract

Modified Chebyshev-Picard Iteration methods are presented for solving high precision, long-term orbit propagation problems. Fusing Chebyshev polynomials with the classical Picard iteration method, the proposed methods iteratively refine an orthogonal function approximation of the entire state trajectory, in contrast to traditional, step-wise, forward integration methods. Numerical results demonstrate that for orbit propagation problems, the presented methods are comparable to or superior to a state-of-the-art 12th order Runge-Kutta-Nystrom method in a serial processor as measured by both precision and efficiency. We have found revolutionary long solution arcs with more than eleven digit path approximations over one to three lower-case Earth orbit periods, multiple solution arcs can be patched continuously together to achieve very long-term propagation, leading to more than ten digit accuracy with built-in precise interpolation. Of revolutionary practical promise to much more efficiently solving high precision, long-term orbital trajectory propagation problems is the observation that the presented methods are well suited to massive parallelization because computation of force functions along each path iteration can be rigorously distributed over many parallel cores with negligible cross communication needed.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!