
doi: 10.1007/bf03025809
Die Euler'schen ''numeri idonei'' sind jene natürlichen Zahlen m, für welche die Kompositionsklassengruppe binärer Formen der Diskriminante - 4m nur eine Klasse im Geschlecht hat; es wird über die wichtigsten Resultate von L. Euler, C. F. Gauss and \textit{F. Grube} [Über einige Euler'sche Sätze aus der Theorie der quadratischen Formen, Z. Math. Phys. 19, 492-519 (1874)] referiert.
Quadratic extensions, class number, Fibonacci and Lucas numbers and polynomials and generalizations, convenient numbers, Class numbers of quadratic and Hermitian forms, numeri idonei, quadratic fields, quadratic forms, Iwasawa theory
Quadratic extensions, class number, Fibonacci and Lucas numbers and polynomials and generalizations, convenient numbers, Class numbers of quadratic and Hermitian forms, numeri idonei, quadratic fields, quadratic forms, Iwasawa theory
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
