
doi: 10.1007/bf02843999
Alexander's Subbase Theorem is generalized for partially ordered sets. Our generalization is nontrivial inasmuch as Alexander's Theorem pertains to the partially ordered set (T, ∪) whereT is the set of all the open sets of a topological space and thus $$(\overline T ,\underline C )$$ is a complete partially ordered set which is also join infinite distributive, whereas here our generalization pertains to any partially ordered set with a maximum 1 and which satisfies the rather weak «distributivity» condition given by (1) below.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
