Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Israel Journal of Ma...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Israel Journal of Mathematics
Article . 1999 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On embedding trees into uniformly convex Banach spaces

Authors: Jiří Matoušek;

On embedding trees into uniformly convex Banach spaces

Abstract

The author deals with an investigation into the minimum value of \(D= D(n)\) such that any \(n\)-point tree metric space \((T,\rho)\) can be \(D\)-embedded into a given Banach space \((X,\|\cdot\|)\); i.e., there exists a mapping \(f: T\to X\) such that \(D^{-1}\rho(x,y)\leq\|f(x)- f(y)\|\leq \rho(x,y)\) for all \(x,y\in T\). Bourgain showed that \(X\) is super reflexive if and only if \(D(n)\to \infty\) as \(n\to\infty\). For \(X= \ell^p\), \(1< p<\infty\) he gave a lower bound \(\log D(n)\geq\text{const}+ \min\left({1\over 2},{1\over p}\right)\cdot\log(\log\log n)\). The present author presents among other things a more elementary proof of this lower bound and shows that it's tight (up to a multiplicative constant). For Euclidean spaces with no restriction on the dimension \(D(n)= O(\sqrt{\log\log n})\) holds.

Related Organizations
Keywords

\(n\)-point tree metric space, Geometry and structure of normed linear spaces, super reflexive, embedding trees into uniformly convex Banach spaces

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!