
doi: 10.1007/bf02762050
The Volterra integrodifferential equation $$\begin{array}{*{20}c} {u_t (t,x) + \smallint '_0 a(t - s)( - \Delta u(s,x) + f(x,u(s,x)))ds = h(t,x),,} \\ {t > 0,x \in \Omega \subset R^N ,} \\ \end{array} $$ together with boundary and initial conditions is considered. The existence of global solutions (in time) is established under weak assumptions onf. An application in heat flow is also indicated.
Other nonlinear integral equations, Integro-ordinary differential equations, Heat and mass transfer, heat flow, existence, heat flow in materials with memory, semilinear Volterra integrodifferential equation, nonlinear perturbing term, boundary initial value problem
Other nonlinear integral equations, Integro-ordinary differential equations, Heat and mass transfer, heat flow, existence, heat flow in materials with memory, semilinear Volterra integrodifferential equation, nonlinear perturbing term, boundary initial value problem
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
