Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Israel Journal of Ma...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Israel Journal of Mathematics
Article . 1984 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 1984
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Representation ofL p-norms and isometric embedding inL p-spaces

Representation of \(L_ p\)-norms and isometric embedding in \(L_ p\)- spaces
Authors: Neyman, Abraham;

Representation ofL p-norms and isometric embedding inL p-spaces

Abstract

For fixed \(1\leq p|^ p\), \(\xi \in {\mathbb{R}}^ n\). For every positive linear functional \(\sigma\), on that space, the function \(\phi_{\sigma}:{\mathbb{R}}^ n\to {\mathbb{R}}\) given given by \(\phi_{\sigma}(\xi)=\sigma (| |^ p)^{1/p}\) is an \(L_ p\)-semi-norm and the mapping \(\sigma \to \phi_{\sigma}\) is 1-1 and onto. The closed linear span of \(| |^ p\), \(\xi \in {\mathbb{R}}^ n\) is the space of all even continuous functions that are homogeneous of degree p, if p is not an even integer and is the space of all homogeneous polynomials of degree p when p is an even integer. This representation is used to prove that there is no finite list of norm inequalities that characterizes linear isometric embeddability, in any \(L_ p\) unless \(p=2\).

Related Organizations
Keywords

\(L_ p\)-semi-norms, space of all homogeneous polynomials, positive linear functionals, Norms (inequalities, more than one norm, etc.) of linear operators, norm inequalities that characterizes linear isometric embeddability, Sobolev spaces and other spaces of ``smooth'' functions, embedding theorems, trace theorems, Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!