
doi: 10.1007/bf02736130
Multiple-scale Kernel Particle methods are proposed as an alternative and/or enhancement to commonly used numerical methods such as finite element methods. The elimination of a mesh, combined with the properties of window functions, makes a particle method suitable for problems with large deformations, high gradients, and high modal density. The Reproducing Kernel Particle Method (RKPM) utilizes the fundamental notions of the convolution theorem, multiresolution analysis and window functions. The construction of a correction function to scaling functions, wavelets and Smooth Particle Hydrodynamics (SPH) is proposed. Completeness conditions, reproducing conditions and interpolant estimates are also derived. The current application areas of RKPM include structural acoustics, elastic-plastic deformation, computational fluid dynamics and hyperelasticity. The effectiveness of RKPM is extended through a new particle integration method. The Kronecker delta properties of finite element shape functions are incorporated into RKPM to develop a Cm kernel particle finite element method. Multiresolution and hp-like adaptivity are illustrated via examples.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 258 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
