Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Electroni...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Electronic Materials
Article . 1996 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

Magnetophonon oscillations in the transverse and longitudinal magnetoresistance of Hg1−xCdxTe

Authors: J. Baaks; C. L. Littler; D. Brink; M. Bruder;

Magnetophonon oscillations in the transverse and longitudinal magnetoresistance of Hg1−xCdxTe

Abstract

The transverse and longitudinal magnetoresistance (MR) as well as the longitudinal magneto-thermoelectric coefficient of n-type Hg1-xCdxTe (MCT) (0.20 < x < 0.33) have been measured at various temperatures (40 ≤ T≤ 140K) as a function of magnetic field (0 ≤ B≤18 kG). Both the transverse and the longitudinal MR clearly exhibit oscillations which are described in terms of magnetophonon (MP) transitions involving the HgTe-like and the CdTe-like longitudinal optical (LO) phonons of MC.T. The field positions of the transverse MR maxima agree with the calculated MP resonances taking into account nonparabolic bands (k • p model for narrow-gap zinc-blende-type semiconductors) and the polaron effect. Those of the longitudinal MR minima are found to coincide with the oscillation minima in the longitudinal magneto-thermoelectric coefficient. However, these minima are shifted by π/2 to lower fields with respect to the positions of the MP resonances. This phase shift was predicted by Barker1314 for the case of strong Landau level damping but has not been previously observed. In contrast, the MP oscillation minima of the longitudinal MR and the oscillation maxima of the transverse MR of n-type InSb (investigated here for comparison) occur exactly at the fields of the MP resonances. Only the oscillation minima of the longitudinal magneto-thermoelectric coefficient are slightly shifted to the side below the MP resonance fields. With regard to the band parameters and the dominant polar optical mode scattering of charge carriers InSb very much resembles MC.T. InSb, however, is a binary compound whereas MC.T is a solid solution. Thus, the phase shift by π/2 to lower fields observed for the oscillation minima in the longitudinal MR and magneto-thermoelectric coefficient of MC.T may be due to alloy scattering. The temperature coefficients of the MP resonance fields of MC.T are found to be substantially smaller than those reported by Takita et al.11 and McClure et al.10 The larger temperature coefficents are presumably due to unresolved two-phonon structures of the MP oscillations.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!