Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Theoretical Physics
Article . 1982 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 1982
Data sources: zbMATH Open
versions View all 2 versions
addClaim

Cellular Vacuum

Cellular vacuum
Authors: Minsky, Marvin;

Cellular Vacuum

Abstract

Couldany universe satisfy the following conditions? (i) Each volume of space contains only a finite amount of information, because space and time come in discrete units. (ii) Over some range of size and speed, the mechanics of this world are approximately classical. Imagine a crystalline world of tiny, discrete “cells,” each knowing only what its nearest neighbors do. In such a universe, we’ll construct analogs of particles and fields, and ask what it would mean for these to satisfy constraints like conservation of momentum. In each case classical mechanics will break down—on scales both small and large—and strange phenomena will emerge: a maximal velocity, a slowing of internal clocks, a bound on simultaneous measurement, and quantumlike effects in very weak or intense fields.

Related Organizations
Keywords

Cellular automata (computational aspects), crystalline world, conservation in cellular arrays, maximal velocity, slowing of internal clocks, bound on simultaneous measurement, approximately classical mechanics, Foundations, quantum information and its processing, quantum axioms, and philosophy, discrete units, analogs of particles and fields, Unified, higher-dimensional and super field theories, finite amount of information, quantumlike effects in very weak or intense fields, Axiomatics, foundations

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!