
doi: 10.1007/bf02589032
Summary: In recent years, the bootstrap method has been extended to time series analysis where the observations are serially correlated. Contributions have focused on the autoregressive model producing alternative resampling procedures. In contrast, apart from some empirical applications, very little attention has been paid to the possibility of extending the use of the bootstrap method to pure moving average (MA) or mixed ARMA models. In this paper, we present a new bootstrap procedure which can be applied to assess the distributional properties of the moving average parameters estimates obtained by a least square approach. We discuss the methodology and the limits of its usage. Finally, the performance of the bootstrap approach is compared with that of the competing alternative given by the Monte Carlo simulation.
Time series, auto-correlation, regression, etc. in statistics (GARCH), Nonparametric statistical resampling methods, moving average models, time series, bootstrap
Time series, auto-correlation, regression, etc. in statistics (GARCH), Nonparametric statistical resampling methods, moving average models, time series, bootstrap
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
