Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Lipidsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Lipids
Article . 1972 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

The biosynthesis of cyclopropane and cyclopropene fatty acids in higher plants (Malvaceae)

Authors: I. Yano; L. J. Morris; B. W. Nichols; A. T. Jams;

The biosynthesis of cyclopropane and cyclopropene fatty acids in higher plants (Malvaceae)

Abstract

AbstractThe biosynthesis of cyclopropane and cyclopropene fatty acids has been investigated in immature seeds, leaves and callus tissue cultures of several species of Malvaceae. Chemical characterization of labeled cyclopropane and cyclopropene fatty acids obtained from incubations withl‐[14CH3] methionine confirmed that the ring methylene group was derived from the methyl group of methionine. The variation with time in the distribution of radioactivity in the products of incubations with [14CH3] methionine and [2‐14C] acetate suggested that the pathway involved initial formation of dihydrosterculic acid from oleic acid with subsequent desaturation to sterculic acid and α‐oxidation to malvalic and dihydromalvalic acids. Direct evidence in favor of this pathway was provided by the conversion of [1‐14C] oleic acid to dihydrosterculic and sterculic acids and by the desaturation of [1‐14C] dihydrosterculic acid to sterculic acid, the first time that these processes have been demonstrated in higher plants. No conversion of [1‐14C] stearolic acid to sterculic acid could be obtained under the same conditions. The presence of an active fatty acid α‐oxidation system was demonstrated in the callus cultures.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!