
doi: 10.1007/bf02523403
AbstractChemical interesterification of butterfat‐canola oil blends, ranging from 100% butterfat to 100% canola oil in 10% increments, decreased solid fat content (SFC) of all blends in a nonlinear fashion in the temperature range of 5 to 40°C except for butterfat and the 90∶10 butterfat/canola oil blend, whose SFC increased between 20 and 40°C. The sharp melting associated with butterfat at 15–20°C disappeared upon interesterification. Heats of fusion for butterfat to the 60∶40 butterfat/canola oil blend decreased from 75 to 60 J/g. Blends with >50% canola oil displayed a much sharper drop in enthalpy. Heats of fusion were 30–50% lower on average for interesterified blends than for their noninteresterified counterparts. Both noninteresterified and interesterified blends deviated substantially from ideal solubility, with greater deviation as the proportion of canola oil increased. The change in the entropy of melting was consistently higher for noninteresterified blends than for interesterified blends. Chemical interesterification generated statistically significant differences for all triacylglycerol carbon species (C) from C30 to C56′ except for C42′ and in SFC at most temperatures for all blends.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 86 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
