Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ionicsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ionics
Article . 2001 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

Electrical properties of A′Ca2Nb3O10 (A′=K, Rb, Cs) layered perovskite ceramics

Authors: V. Thangadurai; W. Weppner;

Electrical properties of A′Ca2Nb3O10 (A′=K, Rb, Cs) layered perovskite ceramics

Abstract

The electrical conductivity properties of Dion-Jacobson type layered perovskites A′Ca2Nb3O10 (A′=K, Rb, Cs) was investigated under different gas atmospheres. An increase in the electrical conductivity by about 2–5 orders in magnitude in both ammonia and hydrogen atmospheres is observed compared to air. Among the members of the series, the compound with the smallest size of the alkali ion, i.e. KCa2Nb3O10, exhibits the highest conductivity. In air and hydrogen, a single activation energy value in the range 0.25 – 0.80 eV is observed, while in ammonia a sharp increase in the electrical conductivity is found at about 500 °C. The activation energy at low-temperatures (300–500 °C) is attributed to ionic motion and at higher temperatures (500–700 °C) to both defect formation and ionic motion. The unusual electrical conductivity behavior in ammonia is explained on the basis of the model developed for alkali halides. EMF measurements reveal that the layered perovskites are ionic (proton) conductors. The electrical conductivity changes as a function of the ammonia gas concentration; accordingly, layered perovskites appear to be useful solid electrolytes in galvanic cells for practical applications, e.g. for gas sensors.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!