
doi: 10.1007/bf02324072
A two-dimensional model of the transversal cross section of a bonded rocket propellant grain was subjected to uniform and steady thermal loading and, alternatively, to mechanically applied uniform radial displacements on the outer boundary. The optimization of perforation contours (attained in previous research programs by applying uniform pressure on the outer boundary of the grain model) was confirmed for both types of thermal loading. The concentration factor at the fillets of the inner contour was determined. An attempt was made to predict the maximum strain in the actual propellant subjected to the same thermal conditions. The material used for the model was a urethane rubber. The thermoelastic properties of the model material were determined.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
