Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Radboud Repositoryarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Radboud Repository
Article . 1997
Data sources: Radboud Repository
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Psychometrika
Article . 1997 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 1997
Data sources: zbMATH Open
versions View all 3 versions
addClaim

Tail-Measurability in Monotone Latent Variable Models

Tail-measurability in monotone latent variable models
Authors: Ellis, J.L.; Junker, B.W.;

Tail-Measurability in Monotone Latent Variable Models

Abstract

We consider latent variable models for an infinite sequence (or universe) of manifest (observable) variables that may be discrete, continuous or some combination of these. The main theorem is a general characterization by empirical conditions of when it is possible to construct latent variable models that satisfy unidimensionality, monotonicity, conditional independence, and tail-measurability. Tail-measurability means that the latent variable can be estimated consistently from the sequence of manifest variables even though an arbitrary finite subsequence has been removed. The characterizing, necessary and sufficient, conditions that the manifest variables must satisfy for these models are conditional association and vanishing conditional dependence (as one conditions upon successively more other manifest variables). Our main theorem considerably generalizes and sharpens earlier results of Ellis and van den Wollenberg (1993), Holland and Rosenbaum (1986), and Junker (1993). It is also related to the work of Stout (1990).The main theorem is preceded by many results for latent variable models in general—not necessarily unidimensional and monotone. They pertain to the uniqueness of latent variables and are connected with the conditional independence theorem of Suppes and Zanotti (1981). We discuss new definitions of the concepts of “true-score” and “subpopulation,” which generalize these notions from the “stochastic subject,” “random sampling,” and “domain sampling” formulations of latent variable models (e.g., Holland, 1990; Lord & Novick, 1968). These definitions do not require the a priori specification of a latent variable model.

Country
Netherlands
Related Organizations
Keywords

Applications of statistics to psychology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!