
doi: 10.1007/bf02015556
pmid: 24221174
Microbial assimilation of 3 amino acids (glutamic acid, alanine, and ornithine) was characterized in 3 lakes and 2 marine stations using the Michaelis-Menten kinetic approach. The calculated Kt + Sn concentrations were related to chemical concentration measurements of dissolved free amino acids (DFAA) to evaluate the biological and the chemical determinations of the DFAA pools. Concentrations of Kt + Sn always were larger than chemical measurements of the Sn concentrations. Kt + Sn and Sn varied from 11.5 and 9.5 nM (alanine, oligotrophic lake) to 288.7 and 89.9 nM (ornithine, marine harbor station), respectively. Subtracting Sn from the Kt + Sn concentrations, Kt was found to range from 12-897% of the chemically measured Sn concentrations. To test whether the DFAA actually were free, dissolved molecules, dissolved material in the water samples was separated into various molecular size classes by means of gel permeation chromatography. From 47-116% of the DFAA in the untreated water samples was recovered in the low molecular fraction (<700 Daltons). Variation in recoveries mainly appeared to be due to an incomplete chromatographic separation and difficulties in obtaining proper blank levels. The present observations suggest that labeled tracers can be used in the study of DFAA assimilation and that the DFAA are free, dissolved molecules. This partly conflicts with previously published reports.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
