
doi: 10.1007/bf01908988
Пустьf(x) — функция, неп рерывная и кусочно-мо нотонная на [−1,1], и пустьω(f, δ) — модуль непрерывнос ти этой функции, as—чис ло участков монотоннос ти f, т. е. число (наи-мень шее) таких интервалов (xi,xi+ 1) (i=0, 1, ...,s−1; хв=−1,xs,=1), чтоf(x) монотонна на каждом из них. Доказано, что для кажд огоn=0,1,... найдется такой алгебраический мног очленРn(х) степенип, что на [− 1,1] signf′(x) signР′n(x) ≧ 0, ¦f(x)−Рn(x)¦ ≦ C(s)ω (f, 1/n+1, где величинаC(s) зависи т только отs. Таким образом, в теоре ме Джексона приближа ющие многочлены могут быт ь выб-раны так, что они «наследую т» свойства монотонн ости приближаемой функци я.
Approximation by polynomials, partially monotone functions, Jackson theorem, Rate of convergence, degree of approximation
Approximation by polynomials, partially monotone functions, Jackson theorem, Rate of convergence, degree of approximation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
