
The problem of the decomposition of the tensor product of finite and infinite representations of a complex semigroup of a Lie group is examined by using the theory of characters of completely irreducible representations. A theorem is proved which indicates that completely irreducible representations enter into the expansion of the tensor product of a finite and elementary representation.
General properties and structure of real Lie groups, Representations of Lie and linear algebraic groups over real fields: analytic methods
General properties and structure of real Lie groups, Representations of Lie and linear algebraic groups over real fields: analytic methods
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
