Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annali di Matematica...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Annali di Matematica Pura ed Applicata (1923 -)
Article . 1982 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 1982
Data sources: zbMATH Open
versions View all 2 versions
addClaim

Cofibrations of algebras

Authors: Katz, Elyahu;

Cofibrations of algebras

Abstract

The chain complex of a twisted free product A*t, FK, is chain homotopy equivalent to a differential graded algebra, which is identified to be a confibration of algebras as defined by Quillen. Under certain connectivity conditions we obtain a long exact sequence connecting the homologies of A, K, and A*t FK. In particular we derive a long exact sequence connecting the homologies of ΩY, ΩΣX and Ω(Y Ug CX) (Ω, C, Σ are the loop, the cone and the suspension constructions respectively). A chain complex equivalent to the chain complex of the Milnor free group FX is recognized, from which results a theorem of Bott and Samelson that H(ΩΣX) is freely generated as a graded algebra by H(X).

Keywords

cofibration of algebras, Homological algebra in category theory, derived categories and functors, twisted free tensor product, homology of the loop space of a suspension, Graded rings and modules (associative rings and algebras), Modules of differentials, Associative rings determined by universal properties (free algebras, coproducts, adjunction of inverses, etc.), loop space, differential graded algebra, Homology and cohomology of \(H\)-spaces, chain complex of a twisted free product, Loop spaces

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!