
doi: 10.1007/bf01624473
Green's theorem on harmonic functions makes it possible to determine the integral relationship between the harmonic function and its derivative with respect to the normal on a closed Lyapunov surface. The conditions of solvability are given by Fredholm's theory of integral equations. The solution for a sphere was presented by Molodenskii[3] and the general solution with the help of Molodenskii's parameter k by Ostach[4]. The present paper indicates a possibility of solving this problem with the help of a system of linear algebraic equations, a simplified modification of the Ostach-Molodenskii solution and, finally, a method, based on Eremeev's solution of the fundamental integral equation[5].
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
