<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1007/bf01388810
The notions of canonical and quasi-canonical liftings of the \(p\)-divisible group associated to an ordinary elliptic curve defined over a perfect field k of positive characteristic were introduced by \textit{J. Lubin, J.- P. Serre} and \textit{J. Tate} in a famous Woods Hole report of 1964. The author considers here liftings of a connected formal group \(G\) of dimension 1 and height 2 over \(K\). The assumption that rigidifies the situation is that one is given a complete DVR \(A\) with quotient field \(F\) and finite residue field \(A/(\pi)\hookrightarrow k\) and a ring homomorphism \(g: A\to \text{End}_ kG=R\) sending \(\pi\) to the Frobenius endomorphism of \(G\). Now \(R\) is the maximal order in the quaternion algebra \(B\) over \(F\); for a quadratic extension \(K\) of \(F\), one chooses an embedding \(\alpha: {\mathfrak O}_ K\hookrightarrow R\). It is with respect to this embedding \(\alpha\) that the author introduces the notions of canonical and quasi-canonical liftings of \(G\). The canonical lifting \(\bar G\) is defined over the ring of integers \(W\) of the maximal unramified extension \(M\) of \(K\) (with norm group \({\mathfrak O}^*_ K\) in \(K^*)\), it admits multiplications by \({\mathfrak O}_ K\) and is essentially unique. Quasi-canonical liftings of level \(s\geq 1\) exist for all \(s\geq 1\), are defined over the ring of integers \(W\) of the abelian extension \(M\) of \(K\) with norm group \({\mathfrak O}^*_ s=(A+\pi^ s{\mathfrak O}^*_ K)\) in \(K^*\) and admit multiplications by \({\mathfrak O}_ s\); they are permuted by the action of \(\text{Gal}(M_ s/_ M)\). The similarity to the Serre-Tate situation is remarkable.
510.mathematics, Class field theory; \(p\)-adic formal groups, Formal groups, \(p\)-divisible groups, quasi-canonical liftings of a connected formal group, Article
510.mathematics, Class field theory; \(p\)-adic formal groups, Formal groups, \(p\)-divisible groups, quasi-canonical liftings of a connected formal group, Article
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 76 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |