
doi: 10.1007/bf01339076
A direct product decomposition is given for the multiplicative semigroup of a finite near integral domain in terms of the subsemigroup of left identities and a group of automorphisms on the additive group of the domain. Conditions are given which insure that every element will have a uniquen-th root. If there existsx≠0 such that (−x)y=−(xy), for eachy, then the additive group of the near integral domain is abelian. Other conditions sufficient for the commutativity of the additive group are given. An example illustrates that non-isomorphic finite near integral domains can have a left ideal decomposition into Sylow subgroups which are isomorphic as near-rings. Another example shows that an infinite near integral domain need not have a nilpotent additive group, even in the d. g. case. It is conjectured that for each natural numbern there is a near integral domain whose additive group is of nilpotent classn.
Near-rings, 510.mathematics, Article
Near-rings, 510.mathematics, Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
