
doi: 10.1007/bf01099997
Letα r denote the number of cycles of length r in a random permutation, taking its values with equal probability from among the set Sn of all permutations of length n. In this paper we study the limiting behavior of linear combinations of random permutationsα 1, ...,α r having the form $$\zeta _{n, r} = c_{r1^{a_1 } } + ... + c_{rr} a_r $$ in the case when n, r→∞. We shall show that the class of limit distributions forξ n,r as n, r→∞ and r In r/h→0 coincides with the class of unbounded divisible distributions. For the random variables ηn, r=α 1+2α 2+... rα r, equal to the number of elements in the permutation contained in cycles of length not exceeding r, we find' limit distributions of the form r In r/n→0 and r=γ n, 0<γ<1.
Combinatorial probability
Combinatorial probability
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
