
doi: 10.1007/bf01013440
We discuss a recent theorem which establishes a precise connection between (i) the approximate degeneracy of the zero eigenvalue for the generator of the Glauber dynamics of the Ising model in a small nonzero field and below the critical temperature, (ii) the existence of a partition of the configuration space into a normal region and a metastable region. This enables us to demonstrate that the recent approach to metastability of Davies and Martin may be viewed as a simple (although in some ways fairly crude) approximation to the conventional approach. We also obtain what appear to be the first results concerning the stability of metastable states under small perturbations.
metastability, stability of metastable states under small perturbations, Ising model, Interacting random processes; statistical mechanics type models; percolation theory, Classical equilibrium statistical mechanics (general), Glauber dynamics
metastability, stability of metastable states under small perturbations, Ising model, Interacting random processes; statistical mechanics type models; percolation theory, Classical equilibrium statistical mechanics (general), Glauber dynamics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
