
doi: 10.1007/bf00968690
In dem Artikel definiert man die Begriffe der phänomenologischen Symmetrie der \(n\)-dimensionalen Geometrie der Abstände des Rangs \(m=n+2\) und der \(n\)-dimensionalen Geometrie der Abstände mit gruppaler Symmetrie der Ordnung \(n(n+1)/2\) auf einer vorgegebenen Menge. Man zeigt, daß die gruppale Symmetrie des \(n\)-dimensionalen Raumes, welcher die Bewegung des festen Körpers mit \(n(n+1)/2\) Freiheitsgraden definiert, äquivalent mit der phänomenologischen Symmetrie ist.
Analytic geometry with other transformation groups, physical structures, phenomenological symmetry, General theory of distance geometry, Metric geometry, group symmetry, Axiomatics, foundations
Analytic geometry with other transformation groups, physical structures, phenomenological symmetry, General theory of distance geometry, Metric geometry, group symmetry, Axiomatics, foundations
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
