Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Lithuanian Mathemati...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Lithuanian Mathematical Journal
Article . 1985 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Weak convergence of measures

Authors: R. Mikulevičius;

Weak convergence of measures

Abstract

Etant donné un espace de probabilité (\(\Omega\),\({\mathcal F},P)\), on considère une famille (\({\mathcal X}_{\omega})_{\omega \in \Omega}\) d'ensembles et \({\bar \Omega}=\cup_{\omega}\{\omega \}\times {\mathcal X}_{\omega}\), on se donne une famille \({\mathcal U}=\{(f_ i)_{i\in I_ 0}\}\) de fonctions de \({\bar \Omega}\) dans \({\mathbb{R}}\) telles que \(\sigma \{f_ i,i\in I_ 0\}\subset \{A\subset {\bar \Omega};p(A)\in {\mathcal F}\}\) où p est la projection de \({\bar \Omega}\) sur \(\Omega\) (p:(\(\omega\),x)\(\to \omega)\). Dans chaque \({\mathcal X}_{\omega}\) on introduit la topologie engendrée par les fonctions \(f_ i(\omega,\cdot)\) (les \(f_ i(\omega,\cdot)\) sont supposées séparer les points de \({\mathcal X}_{\omega})\); enfin notant \(C_ b({\bar \Omega})=\sigma \{f:{\bar \Omega}\to {\mathbb{R}}\); f(\(\omega\),\(\cdot)\) est continue pour chaque \(\omega\) et bornée\(\}\) on considère l'ensemble \(M_+({\bar \Omega})\) des mesures positives définies sur \({\bar \Omega}\), ayant pour image par p, la probabilité P, et sur \(M_+({\bar \Omega})\) la topologie engendrée par les applications \(\mu\) \(\to \mu (f)\) où \(f\in C_ b({\bar \Omega})\cap {\mathcal U}.\) On étudie dans l'article cette topologie, et en particulier on donne des conditions de relative compacité pour des ensembles de \(M_+({\bar \Omega})\).

Keywords

Probability measures on topological spaces, Spaces of measures, convergence of measures, relative compactness, Convergence of probability measures

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!