
doi: 10.1007/bf00729994
By making use of the method of moments we study some aspects of the statistical behavior of the nonrelativistic harmonic oscillator according to stochastic electrodynamics. We show that the random rotations induced on the particle by the zero-point field account for the magnitude of the spin of the electron, the result differing from the correct one(3/4)h 2 by a factor of2. Assuming that the measurement of a spin projection may be effectively taken into account by considering the action of only the subensemble of the field with the corresponding circular polarization, the calculated value of the spin projection comes out to be the correct one within a factor of order unity. The radiative corrections give rise to both the Lamb shift and the anomalous magnetic moment of the electron, the latter being evaluated to within a factor of2. The magnetic and gyromagnetic properties of the electron come out to be in agreement with quantum mechanics. Interference effects are shown to occur when evaluating the average value of the square of the angular momentum.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
