<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1007/bf00709438
pmid: 7709682
This bibliographical review of the modelling of the mitotic apparatus covers a period of one hundred and twenty years, from the discovery of the bipolar mitotic spindle up to the present day. Without attempting to be fully comprehensive, it will describe the evolution of the main ideas that have left their mark on a century of experimental and theoretical research. Fol and Bütschli's first writings date back to 1873, at a time when Schleiden and Schwann's cell theory was rapidly gaining ground throughout Germany. Both mitosis and chromosomes were to be discovered within the space of thirty years, along with the two key events in the animal and plant reproductive cycle, namely fecondation and meiosis. The mitotic pole, a term still in use to this day, was employed to describe a morphological fact which was noted as early as 1876, namely that the lines and the dots of the karyokinetic figure, with its spindle and asters, looks remarkably like the lines of force around a bar magnet. This was to lead to models designed to explain the movements of chromosomes which take place when the cell nucleus appears to cease to exist as an organelle during mitosis. The nature of those mechanisms and the origin of the forces behind the chromosomes' ordered movements were central to the debate. Auguste Prenant, in a remarkable bibliographical synthesis published in 1910, summed up the opposing viewpoints of the 'vitalists', on the one hand, who favoured the theory of contractility or extensility in spindle fibres, and of those who believed in models based on physical phenomena, on the other. The latter subdivided into two groups: some, like Bütschli, Rhumbler or Leduc, referred to diffusion, osmosis and superficial tension, whilst the others, led by Gallardo and Hartog, focussed on the laws of electromagnetism. Lillie, Kuwada and Darlington followed up this line of research. The mid-20th century was a major turning point. Most of the modelling mentioned above was criticized and fell into disuse after disappearing from research publications and textbooks. This marked the onset of a new era, as electron microscopes made possible the materialization and detailed study of the macromolecular elements of the fibres, filaments and microtubules of the cytoskeleton.(ABSTRACT TRUNCATED AT 400 WORDS)
Microscopy, Electron, Cell Cycle, Mitosis, History, 19th Century, Cell Biology, History, 20th Century, Models, Biological
Microscopy, Electron, Cell Cycle, Mitosis, History, 19th Century, Cell Biology, History, 20th Century, Models, Biological
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |