Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Acta Biotheoreticaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Acta Biotheoretica
Article . 1995 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modelling the mitotic apparatus

From the discovery of the bipolar spindle to modern concepts
Authors: Jean-Pierre Gourret;

Modelling the mitotic apparatus

Abstract

This bibliographical review of the modelling of the mitotic apparatus covers a period of one hundred and twenty years, from the discovery of the bipolar mitotic spindle up to the present day. Without attempting to be fully comprehensive, it will describe the evolution of the main ideas that have left their mark on a century of experimental and theoretical research. Fol and Bütschli's first writings date back to 1873, at a time when Schleiden and Schwann's cell theory was rapidly gaining ground throughout Germany. Both mitosis and chromosomes were to be discovered within the space of thirty years, along with the two key events in the animal and plant reproductive cycle, namely fecondation and meiosis. The mitotic pole, a term still in use to this day, was employed to describe a morphological fact which was noted as early as 1876, namely that the lines and the dots of the karyokinetic figure, with its spindle and asters, looks remarkably like the lines of force around a bar magnet. This was to lead to models designed to explain the movements of chromosomes which take place when the cell nucleus appears to cease to exist as an organelle during mitosis. The nature of those mechanisms and the origin of the forces behind the chromosomes' ordered movements were central to the debate. Auguste Prenant, in a remarkable bibliographical synthesis published in 1910, summed up the opposing viewpoints of the 'vitalists', on the one hand, who favoured the theory of contractility or extensility in spindle fibres, and of those who believed in models based on physical phenomena, on the other. The latter subdivided into two groups: some, like Bütschli, Rhumbler or Leduc, referred to diffusion, osmosis and superficial tension, whilst the others, led by Gallardo and Hartog, focussed on the laws of electromagnetism. Lillie, Kuwada and Darlington followed up this line of research. The mid-20th century was a major turning point. Most of the modelling mentioned above was criticized and fell into disuse after disappearing from research publications and textbooks. This marked the onset of a new era, as electron microscopes made possible the materialization and detailed study of the macromolecular elements of the fibres, filaments and microtubules of the cytoskeleton.(ABSTRACT TRUNCATED AT 400 WORDS)

Keywords

Microscopy, Electron, Cell Cycle, Mitosis, History, 19th Century, Cell Biology, History, 20th Century, Models, Biological

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Related to Research communities
INRAE
Upload OA version
Are you the author? Do you have the OA version of this publication?